Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$, a rock-salt superstructure phase with a fully ordered cation arrangement

Hisanori Yamane, ${ }^{\text {a* }}$ Hiroki Takahashi, ${ }^{\text {a }}$ Takashi Kajiwara ${ }^{\text {b }}$ and Masahiko Shimada ${ }^{\text {a }}$

${ }^{\text {a }}$ Institute for Advanced Materials Processing, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan, and ${ }^{\mathbf{b}}$ Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Sendai 980-8578, Japan
Correspondence e-mail: yamane@ibis.iamp.tohoku.ac.jp
Received 31 March 2000
Accepted 27 June 2000
The title quaternary oxide, trisodium dicalcium tantalum hexaoxide, is isostructural with $\mathrm{Li}_{3} \mathrm{Ni}_{2} \mathrm{TaO}_{6}$, a partially ordered rock-salt phase. The Na, Ca and Ta atoms occupy octahedral sites in an orderly manner and form a cationordered superstructure.

Comment

The crystal structures of a series of quaternary compounds containing lithium, i.e. $\mathrm{Li}_{3} M_{2} X_{\mathrm{O}}^{6}(M=\mathrm{Mg}, \mathrm{Co}, \mathrm{Ni} ; X=\mathrm{Nb}$, Ta), were analyzed by X-ray and/or neutron powder diffraction (Fletcher et al., 1994; Mather et al., 1995). These compounds have a rock-salt superstructure with partial cation order. There are four fully occupied octahedral cation sites in the structure; three of these are occupied statistically by Li and M atoms with different occupancies. The title compound, $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$, has the same crystal structure and is the first compound with a fully ordered cation arrangement (Table 1).

Bond-valence sums were calculated with the bond distances listed in Table 1, using the bond-valence parameters presented by Brese \& O'Keeffe (1991). The values of 1.00 for the Na1 site, 1.03 for the Na 2 site and 2.18 for the Ca site support the full occupation of the Na and Ca atoms at each octahedral site in $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$. The bond-valence sums calculated with an $\mathrm{Ni}^{\mathrm{II}}-\mathrm{O}$ parameter for the three partially ordered octahedral sites in $\mathrm{Li}_{3} \mathrm{Ni}_{2} \mathrm{TaO}_{6}$, for example, were in the range 1.6-1.8. These values suggest partial substitution of $\mathrm{Li}^{\mathrm{II}}$ for $\mathrm{Ni}^{\mathrm{II}}$.

As shown in Fig. 1, the ordering sequence of cations along the c axis is $-\mathrm{Ca}-\mathrm{Na} 1-\mathrm{Na} 2-\mathrm{Na} 1-\mathrm{Ca}-\mathrm{Ta}-$. The CaO_{6} octahedron is elongated along the c axis (Fig. 2). The lengths of the six $\mathrm{Ca}-\mathrm{O}$ bonds in the octahedron are in a narrow range [2.3142 (10)-2.353 (3) Å]. The oxygen octahedron of the Na 2 site, adjacent to the Ta site along the a axis, is most distorted. The $\mathrm{Na} 2-\mathrm{O}$ distance along the b axis is 2.735 (4) \AA, while the others are 2.366 (3) Å. The displacement ellipsoid of the Na 2 atom is also elongated along the b axis. On the other hand, the $\mathrm{Ta}-\mathrm{O}$ bond distances in the TaO_{6} octahedron are
almost the same $[2.012$ (4)-2.027 (3) \AA] and the $\mathrm{O}-\mathrm{Ta}-\mathrm{O}$ angles are close to the ideal value for a regular octahedron. The $\mathrm{Ta}-\mathrm{O}$ bond distances are consistent with those observed in $\mathrm{Li}_{3} \mathrm{Ni}_{2} \mathrm{TaO}_{6}$ [1.989 (2)-2.015 (2) \AA; Mather et al., 1995].
The polycrystalline sintered sample of $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$ was an insulator at room temperature and conductive at high temperatures. Evidence of electrode-polarization effects was seen in impedance plots above 700 K . The conductivity was $1.65 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$ at 573 K and $7.54 \times 10^{-5} \mathrm{~S} \mathrm{~cm}^{-1}$ at 670 K . The activation energy, E_{a}, was $130 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the tempera-

Figure 1
The structure of $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$ showing the oxygen octahedra.

Figure 2
The structure of the octahedral coordinations in $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$, showing 99% probability displacement ellipsoids.
ture region from 570 to 670 K . Above $700 \mathrm{~K}, E_{a}$ changed to about $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The conductivity was $8.13 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}$ at 773 K and $1.53 \times 10^{-3} \mathrm{~S} \mathrm{~cm}^{-1}$ at 873 K . The two-probe dc (direct current) measurement with the Au ion-blocking electrodes at 673 K , also showed a polarization effect. These data suggested ionic conduction of $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$. Ionic conduction was not detected for $\mathrm{Li}_{3} \mathrm{Ni}_{2} \mathrm{TaO}_{6}$ with partial cation ordering (Fletcher et al., 1994).

Experimental

$\mathrm{Na}_{2} \mathrm{CO}_{3}$ (extra pure grade, Wako Pure Chemical Industries Ltd), CaCO_{3} (99.99% purity, Rare Metallic Co. Ltd) and $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (99.99% purity, Rare Metallic Co. Ltd) were weighed to give a 6:3:1 atomic ratio of $\mathrm{Na}: \mathrm{Ca}: \mathrm{Ta}$. The powders were mixed in an agate mortar and then pressed into a pellet. The pellet was heated at 1273 K for 1 h in air on a Pt plate. After heating, the sample was cooled to 1073 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$. Below this temperature, the sample was cooled in a furnace by shutting off the electric power. Grain growth was observed in the obtained pellet sample. A colourless transparent granule of $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$ with a size of about $100 \mu \mathrm{~m}$ was picked from the crushed sample and used for the single-crystal X-ray diffraction analysis. Semi-quantitative energy dispersive X-ray analysis (EDAX Kevex) was carried out for the granule on a scanning electron microscope (Hitachi X-60). The Na:Ca:Ta atomic ratio obtained was 3.0:1.9:0.7, which was close to the ideal ratio of 3:2:1. EDAX analysis did not detect any other impurity elements. For conductivity measurements, a sintered polycrystalline pellet of $\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$ was prepared at 1137 K over a period of 12 h from a mixture of starting materials with the stoichiometric composition. The electric impedance at ambient temperature was sensitive to moisture in air. Thus, the measurements were made under an argon atmosphere with Au electrodes, using an impedance analyzer (HP 4194-A).

Crystal data

$\mathrm{Na}_{3} \mathrm{Ca}_{2} \mathrm{TaO}_{6}$
$M_{r}=426.08$
Orthorhombic, Fddd
$a=6.5948$ (17) £
$b=9.493$ (3) A
$c=19.640(5) \AA$
$V=1229.5(6) \AA^{3}$
$Z=8$
$D_{x}=4.604 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

CCD area-detector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.197, T_{\text {max }}=0.295$
1891 measured reflections
361 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.015$
$w R\left(F^{2}\right)=0.035$
$S=1.130$
361 reflections
32 parameters

Mo $K \alpha$ radiation

Cell parameters from 1501
reflections
$\theta=3.89-27.46^{\circ}$
$\mu=19.730 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Granule, colourless
$0.10 \times 0.09 \times 0.05 \mathrm{~mm}$

305 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.46^{\circ}$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 6$
$l=-24 \rightarrow 25$
Intensity decay: none

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0195 P)^{2}\right] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.93 \text { e } \AA^{-3} \\
\Delta \rho_{\min }=-1.51 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {i }}$	2.3986 (16)	$\mathrm{Ca}-\mathrm{O}{ }^{\text {ii }}$	2.3142 (10)
$\mathrm{Na} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.3986 (16)	$\mathrm{Ca}-\mathrm{O} 2^{\text {i }}$	2.3142 (10)
$\mathrm{Na} 1-\mathrm{O} 1^{\text {iii }}$	2.433 (3)	$\mathrm{Ca}-\mathrm{O} 1^{\text {xi }}$	2.353 (3)
$\mathrm{Na} 1-\mathrm{O} 1^{\text {iv }}$	2.433 (3)	$\mathrm{Ca}-\mathrm{O} 1^{\text {xii }}$	2.353 (3)
$\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{v}}$	2.573 (3)	$\mathrm{Ca}-\mathrm{O} 1^{\text {xiii }}$	2.361 (3)
$\mathrm{Na} 1-\mathrm{O}^{\text {vi }}$	2.573 (3)	$\mathrm{Ca}-\mathrm{O} 1^{\text {xiv }}$	2.361 (3)
$\mathrm{Na} 2-\mathrm{O} 1^{\text {vii }}$	2.366 (3)	$\mathrm{Ta}-\mathrm{O} 2^{\mathrm{xv}}$	2.012 (4)
$\mathrm{Na} 2-\mathrm{O}^{\text {vi }}$	2.366 (3)	$\mathrm{Ta}-\mathrm{O} 2$	2.012 (4)
$\mathrm{Na} 2-\mathrm{O} 1^{\text {viii }}$	2.366 (3)	$\mathrm{Ta}-\mathrm{O} 1^{\mathrm{xv}}$	2.027 (3)
$\mathrm{Na} 2-\mathrm{O} 1^{\mathrm{v}}$	2.366 (3)	$\mathrm{Ta}-\mathrm{O} 1^{\text {xiv }}$	2.027 (3)
$\mathrm{Na} 2-\mathrm{O} 2^{\text {ix }}$	2.735 (4)	$\mathrm{Ta}-\mathrm{O} 1^{\text {xiii }}$	2.027 (3)
$\mathrm{Na} 2-\mathrm{O} 2^{\mathrm{x}}$	2.735 (4)	Ta-O1	2.027 (3)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 2^{\mathrm{ii}}$	89.45 (8)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 2^{\mathrm{i}}$	93.66 (5)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 1^{\text {iii }}$	97.86 (12)	$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xi }}$	100.53 (12)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {iii }}$	73.18 (13)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xi }}$	74.67 (13)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {iv }}$	167.67 (16)	$\mathrm{O} 1^{\mathrm{xi}}-\mathrm{Ca}-\mathrm{O} 1^{\text {xii }}$	173.16 (14)
$\mathrm{O} 22^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{O} 1^{\text {v }}$	171.67 (11)	$\mathrm{O} 2^{\text {ii }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xiii }}$	167.83 (10)
$\mathrm{O} 22^{\text {ii }}-\mathrm{Na} 1-\mathrm{O}^{\text {v }}$	89.08 (6)	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Ca}-\mathrm{O} 1^{\text {xiii }}$	96.56 (7)
$\mathrm{O} 1^{\text {iii }}-\mathrm{Na} 1-\mathrm{O} 1^{\mathrm{v}}$	89.57 (10)	$\mathrm{O}{ }^{\text {xi }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xiii }}$	88.56 (10)
$\mathrm{O} 1^{\text {iv }}-\mathrm{Na} 1-\mathrm{O} 1^{\text {v }}$	98.90 (9)	$\mathrm{O} 1^{\text {xii }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xiii }}$	96.90 (11)
$\mathrm{O} 1^{\mathrm{v}}-\mathrm{Na} 1-\mathrm{O} 1^{\text {vi }}$	93.53 (14)	$\mathrm{O} 1^{\text {xiii }}-\mathrm{Ca}-\mathrm{O} 1^{\text {xiv }}$	74.14 (14)
$\mathrm{O}_{1}^{\text {vii }}-\mathrm{Na} 2-\mathrm{O}^{\text {vi }}$	178.30 (15)	$\mathrm{O} 2{ }^{\text {xv }}-\mathrm{Ta}-\mathrm{O} 2$	180
$\mathrm{O} 1^{\text {vii }}-\mathrm{Na} 2-\mathrm{O} 1^{\text {viii }}$	104.84 (14)	$\mathrm{O} 2^{\mathrm{xv}}-\mathrm{Ta}-\mathrm{O}^{\text {xv }}$	89.01 (9)
$\mathrm{O} 1^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 1^{\text {viii }}$	75.19 (14)	$\mathrm{O} 2-\mathrm{Ta}-\mathrm{O}^{\text {xv }}$	90.99 (9)
$\mathrm{O}^{\text {vii }}-\mathrm{Na} 2-\mathrm{O}^{\text {ix }}$	89.15 (7)	$\mathrm{O} 1^{\text {xv }}-\mathrm{Ta}-\mathrm{O1}^{\text {xiv }}$	178.01 (17)
$\mathrm{O} 1^{\text {viii }}-\mathrm{Na} 2-\mathrm{O} 2{ }^{\text {ix }}$	90.85 (7)	$\mathrm{O}{ }^{\text {xv }}-\mathrm{Ta}-\mathrm{O}^{\text {xiii }}$	90.82 (15)
$\mathrm{O} 2{ }^{\text {ix }}-\mathrm{Na} 2-\mathrm{O} 2^{\text {x }}$	180	$\mathrm{O} 1^{\text {xiv }}-\mathrm{Ta}-\mathrm{O} 1^{\text {xii }}$	89.21 (15)

Symmetry codes: (i) $-x, \frac{1}{2}-y, \frac{1}{2}-z$; (ii) $\frac{1}{4}+x, y-\frac{1}{4}, \frac{1}{2}-z$; (iii) $\frac{1}{2}-x,-y, \frac{1}{2}-z$; (iv) $x-\frac{1}{4}, \frac{1}{4}+y, \frac{1}{2}-z$; (v) $\frac{3}{4}-x, \frac{1}{4}-y, \frac{1}{2}+z$; (vi) $x-\frac{1}{2}, y, \frac{1}{2}+z$; (vii) $\frac{3}{4}-x, y, \frac{3}{4}-z$; (viii) $x-\frac{1}{2}, \frac{1}{4}-y, \frac{3}{4}-z$; (ix) $\frac{1}{4}-x, \frac{3}{4}-y, \frac{1}{2}+z$; (x) $x, y-\frac{1}{2}, \frac{1}{2}+z$; (xi) $x-\frac{1}{4}, \frac{1}{2}-y, \frac{1}{4}+z$; (xii) $\frac{1}{2}-x, y-\frac{1}{4}, \frac{1}{4}+z$; (xiii) $\frac{1}{4}-x, y, \frac{1}{4}-z$; (xiv) $x, \frac{1}{4}-y, \frac{1}{4}-z$; (xv) $\frac{1}{4}-x, \frac{1}{4}-y, z$.

Data collection: SMART and SAINT (Bruker, 1997); cell refinement: SMART and SAINT; data reduction: EXPREP (Bruker, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 1999).

We would like to thank Professor T. Ito for his encouragement and support, and Y. Sato for the EDAX analysis.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1102). Services for accessing these data are described at the back of the journal.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Brese, N. E. \& O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Bruker (1997). SMART, SAINT and EXPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
Dowty, E. (1999). ATOMS. Version 5 for Macintosh. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
Fletcher, J. G., Mather, G. C., West, A. R., Castellanos, M. \& Gutierrez, M. P. (1994). J. Mater. Chem. 4, 1303-1305.

Mather, G. C., Smith, R. I., Skakle, J. M. S., Fletcher, J. G., Castellanos, R. M. A., Gutierrez, M. P. \& West, A. R. (1995). J. Mater. Chem. 5, 1177-1182.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

